Optimisation of the automated synthesis of 18F-FMISO using the Synthera® Platform

Blykers, Anneleen1, Vaneycken, Ilse1, Xavier, Catarina1, Everaert, Hendrik2, Caveliers, Vicky1,2
1In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.
2Nuclear Medicine Department, UZ Brussel, Brussels, Belgium.

Objectives
Demonstrating tumor hypoxia in vivo in a non-invasive manner by 18F-FMISO-PET can be used to predict resistance to radiotherapy [1]. The automated synthesis of 18F-FMISO (18F-Fluoromisonidazole) was optimized on the Synthera® Platform comprising a synthesis module coupled to an HPLC unit (IBA Molecular, Belgium). The aim was to establish a reliable synthesis with high radiochemical yield using the FDG configuration setup (IFP™) and a reduced amount of precursor (5 mg).

Methods
The NITTP precursor(1-(2’-nitro-1’-imidazolyl)-2-O-tetrahydropyranyl-3-O-toluenesulfonylpropanediol) was purchased from ABX (Germany). 18F-FMISO was synthesized by nucleophilic substitution of tosylate by $[^{18}F]$fluoride and subsequent acidic hydrolysis of the tetrahydropyranyl-protecting group (Fig.1) using a standard disposable FDG cassette (IFP Nucleophilic) [2]. Purification was done by HPLC on a VYDAC 250x10 mm C18 10 µm column using H2O:EtOH (92/8) as eluent at 4 ml/min. Reaction parameters such as reaction time (3-20 min) and temperature (100-145°C) of fluorination were altered in order to optimise the radiochemical yield when using only 5 mg of precursor.

Results
Prolonging the fluorination time did not improve labeling efficiency. In contrast, raising the reaction temperature to 120°C clearly lead to higher yields up to 50% (decay corrected) when using 5 mg of the NITTP precursor. Above 120°C, the yield did not increase further and an intermediate side product was sometimes observed. Reaction times of fluorination could be shortened to 3 minutes at 120°C so that total synthesis including HPLC purification was completed in 40 minutes. The radiochemical purity determined by HPLC was >97%.

Conclusions
We were able to synthesize and purify 18F-FMISO in a reliable routine production manner on the Synthera® platform using the FDG-IFP™ configuration. Yields up to 50% were obtained with 5 mg precursor, which is acceptable although lower compared to 70-80% that can be achieved with the use of 10 mg NITTP.

Research Support
This research was conducted in collaboration with IBA Molecular and was supported by a grant from Philips Medical Systems.

References.