Routine Production of [\(18\text{F}\)]PSMA-1007 and First Clinical Experience in Staging of Prostate Cancer Patients

Vasko Kramer1,2, Rene Fernandez3, Maria Paz Sandoval3,4, Cristiana Gameiro5, Maria-Anna Zerges6,7, David Goblet8, Marco Müller6,9, Rene Martin10, Anna-Maria Zerges3,4, Camilo Sandoval3,4 and Horacio Amaral1,2

1Positronpharma, Santiago, Chile; 2Positronmed, Santiago, Chile; 3IBA Radiopharmaceutical Solutions, Louvain-la-Neuve, Belgium; 4Advanced Biochemical Compounds, Radeberg, Germany; 5Department of Urology, Fundación Arturo Lopez Perez, Santiago, Chile

Introduction

- Prostate-specific membrane antigen (PSMA) is highly overexpressed in prostate cancer (PCa) and considered an ideal target for staging of primary and recurrent PCa [1].
- Different PSMA-targeting PET radiopharmaceuticals have been introduced which showed superior in comparison to standard of care (see Fig. 1).

![Figure 1: Different PSMA Ligands in clinical practice](image1)

- Despite their excellent imaging properties, [\(\text{Ga}\)]-labeled PSMA-tracers can only be produced in small amounts and distributed over short distances, limiting their availability for broader application.
- Recently, [\(\text{[18F]}\)]PSMA-1007 has been introduced, combining the possibility of centralized, large-scale production and higher spatial resolution for PET imaging [2]. Clinical results indicate further advantages such as higher tumor-to-background ratios and lower renal excretion [3].

Objective

- Cardinale et al. described the GMP-compliant production and quality control of [\(\text{[18F]}\)]PSMA-1007 in different synthesis modules and used starting activities of up to 75 GBq [4].
- Our objective was to evaluate the influence of higher starting activities on radiochemical yields (RCY), radiochemical purity (RCP) and stability of the final product.
- We furthermore wanted to confirm the clinical results reported for PSMA-1007 in terms of sensitivity and specificity for the staging of primary PCa.

Materials & Methods

- [\(\text{[18F]}\)]PSMA-1007 was produced under GMP-compliant conditions on the IBA Synthera® platform using commercially available kits and the same procedure as described previously (see Fig. 2).

![Figure 2: Fluidic scheme PSMA-1007 cassette](image2)

- Briefly, 1) \(\text{[18F]}\)-Fluoride trapped on QMA, 2) elution with 75 mM TBA, 3) adding 1 mg prescorer in 1.5 mL DMSO, 4) heating 10 min at 95 °C, 5) purification via C18carrig, cleaning with 5% EtOH, 6) elution with 25% EtOH via SCX and reformulation in acetic acid buffer.
- RCP was determined via Radio-HPLC: column: Poroshell, Agilent, C18 50x4.6 mm, solvent A: acetoniitrile, solvent B: 0.1% TFA, Flow: 1.5 mL/min, gradient: Solvent A 5-15% in 1 min, 15-35% in 9 min, 35-95% in 2.5 min and 95-2.5 min in 2.5 min.
- Stability was determined via radio-HPLC after final product has been stored at RT under enclosure of light for 8h.
- Five patients (68-76 years: PSA = 14.8±7.4; GS = 7-9) with biopsy confirmed PCa underwent a diagnostic PET/CT (Biograph mCT20, Siemens) 66 ± min after injection of 7.5±0.4 mCi [\(\text{[18F]}\)]PSMA-1007. All patients had local disease and underwent radical prostatectomy and lymph node dissection 54±16 days after PET. Immunohistochemistry (IHC) results were compared with PET findings to determine sensitivity, specificity, PPV, NPV and accuracy.

Results

- The production procedure described for the IBA Synthera platform is very reliable and provides excellent RCYs in 35 minutes after EOB.
- RCYs were determined as non decay corrected yields at EOS. From starting activities of 78±21.8 GBq we obtained an average of 41.4±16.5 GBq [\(\text{[18F]}\)]PSMA-1007 corresponding to 53.9±2.8 % RCY n.d., n = 21 with 95.2±2.4 % RCP (see Tab. 1).

<table>
<thead>
<tr>
<th>Activity (GBq)</th>
<th>Product purity (GBq)</th>
<th>RCY (%)</th>
<th>RCP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=7</td>
<td>18.9±1.7</td>
<td>95.8±1.0</td>
<td>628±265</td>
</tr>
<tr>
<td>n=20</td>
<td>33.5±2.6</td>
<td>94.5±2.5</td>
<td>1017±575</td>
</tr>
<tr>
<td>n=8</td>
<td>117.8±30</td>
<td>95.4±2.0</td>
<td>1860±570</td>
</tr>
</tbody>
</table>

- Higher starting activities resulted in lower but still very good RCYs and specific activities while RCPs maintained stable slightly above 95%.
- We found the labeling process and RCYs to be much more affected by non-radioactive impurities from target, fillings or transfer lines as compared to other processes, e.g. FDG.
- No radiolysis was observed in final product and RCP was stable up to 8h after EOS.
- [\(\text{[18F]}\)]PSMA-1007 showed excellent image quality, low renal excretion and higher SUV values as compared to [\(\text{[18F]}\)]Ga-PSMA-11.

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (y)</th>
<th>PSA (ng/mL)</th>
<th>PET</th>
<th>LN</th>
<th>Histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74</td>
<td>12.8</td>
<td>4+4</td>
<td>0</td>
<td>Prostate(-), LN(-)</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>16.5</td>
<td>9</td>
<td>0</td>
<td>Prostate(-), LN(-)</td>
</tr>
<tr>
<td>3</td>
<td>74</td>
<td>8.7</td>
<td>8</td>
<td>0</td>
<td>Prostate(-), LN(-)</td>
</tr>
<tr>
<td>4</td>
<td>67</td>
<td>21.0</td>
<td>4+5</td>
<td>3</td>
<td>Prostate(+), LN(+)</td>
</tr>
<tr>
<td>5</td>
<td>65</td>
<td>18.0</td>
<td>4+3</td>
<td>0</td>
<td>Prostate(-), LN(-)</td>
</tr>
</tbody>
</table>

![Figure 3: PET/CT scans with [\(\text{[18F]}\)]Ga-PSMA-11 and [\(\text{[18F]}\)]PSMA-1007 of case 4](image3)

- Preliminary results confirm the very good sensitivity and specificity although the size of the study group is very small. Further studies are ongoing to increase population size and significance of our results.

Conclusion

- [\(\text{[18F]}\)]PSMA-1007 can be obtained in excellent and reliable radiochemical yields and purities by the described.
- Our first results confirm the excellent imaging properties and underline the clinical potential of this new tracer.
- Further studies are necessary to confirm PET positive lesions in lymph nodes and metastasis by histopathology.

References


Disclosures

Disclosure: Rene Martin, Maria-Anna Zerges and Marco Müller are employees of ABX advanced biochemical compounds GmbH. The one-step synthesis method using Precursor 3 is subject of a patent application by ABX advanced biochemical compounds. Cristiana Gameiro and David Goblet are employees of IBA.